Sodium silicate gel as a precursor for the in vitro nucleation and growth of a bone-like apatite coating in compact and porous polymeric structures.
نویسندگان
چکیده
In the present work, a new methodology to produce bioactive coatings on the surface of starch-based biodegradable polymers or other polymeric biomaterials is proposed. A sodium silicate gel is employed as an alternative nucleating agent to the more typical bioactive glasses for inducing the formation of a calcium-phosphate (Ca-P) layer. The method has the advantage of being able to coat efficiently both compact materials and porous 3D architectures aimed at being used on tissue replacement applications and as tissue engineering scaffolds. By means of this treatment, it is possible to observe the formation of an apatite-like layer, only after 6 hours of simulated body fluid immersion. For the porous materials, this layer could also be observed inside the pores, clearly covering the cell walls. Furthermore, an increase of the surface hydrophilicity (higher amount of polar groups in the surface) might contribute to the formation of silanol groups that also act as apatite inductors. After 30 days of SBF immersion, the apatite-like films exhibit a partially amorphous nature and the Ca/P ratios became much closer to the value attributed to hydroxyapatite (1.67). The obtained results are very promising for the development of cancellous bone replacement materials and for pre-calcifying bone tissue engineering scaffolds.
منابع مشابه
Fabrication of hydroxyapatite-baghdadite nanocomposite scaffolds coated by PCL/Bioglass with polyurethane polymeric sponge technique
Objecttive (s): Silicate bioceramics like Baghdadite with chemical formula Ca3ZrSi2O9, has attracted the attention of researchers in biomedical field due to its remarkable in-vitro and in-vivo bioactivity and mechanical properties.Materials and Methods: Therefore, in the current study the baghdadite powder with Sol-Gel method was synthesized. Then, hydroxyapatite/Baghdadite (HA/Bagh) scaffolds ...
متن کاملHydroxyapatite-Hardystonite nanocomposite scaffolds prepared by the replacing the polyurethane polymeric sponge technique for tissue engineering applications
Objective (s): Silicate bioceramics containing Zn and Ca like hardystonite (Hr) with chemical formula Ca2ZnSi2O7 has attracted the attention of researchers in biomedical field due to its remarkable biological and mechanical properties. The new generation of bioceramics can applied in bone tissue engineering to substitute with infected bone. However, these zirconium-silicate bioceramics have pro...
متن کاملNucleation and growth of biomimetic apatite layers on 3D plotted biodegradable polymeric scaffolds: effect of static and dynamic coating conditions.
Apatite layers were grown on the surface of newly developed starch/polycaprolactone (SPCL)-based scaffolds by a 3D plotting technology. To produce the biomimetic coatings, a sodium silicate gel was used as nucleating agent, followed by immersion in a simulated body fluid (SBF) solution. After growing a stable apatite layer for 7 days, the scaffolds were placed in SBF under static, agitated (80 ...
متن کاملIn vitro behavior of silk fibroin-coated calcium magnesium silicate scaffolds
Bioceramic scaffolds such as silicate bioceramics have been widely used for bone tissue engineering. However, their high degradation rate, low mechanical strength and surface instability are main challenges compromising their bioactivity and cytocompatibility which further negatively affect the cell growth and attachment. In this study, we have investigated the effects of silk fibroin coating o...
متن کاملIn vitro evaluation of apatite/wollastonite glass–ceramic nano biocoatings on 316 alloys by plasma-sprayed
Among bioactive ceramics, the apatite/wollastonite (A/W) glass ceramic, containing apatite and wollastonite crystals in the glassy matrix, has been largely studied because of good bioactivity and used in some fields of medicine, especially in orthopedics and dentistry. However, medical applications of bioceramic are limited to non-load bearing applications because of their poor mechanical prope...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Biomaterials
دوره 24 15 شماره
صفحات -
تاریخ انتشار 2003